\(\int (d \sin (e+f x))^n \sqrt {a+a \sin (e+f x)} (A+B \sin (e+f x)) \, dx\) [9]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [F]
   Fricas [F]
   Sympy [F]
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 35, antiderivative size = 137 \[ \int (d \sin (e+f x))^n \sqrt {a+a \sin (e+f x)} (A+B \sin (e+f x)) \, dx=-\frac {2 a (2 B (1+n)+A (3+2 n)) \cos (e+f x) \operatorname {Hypergeometric2F1}\left (\frac {1}{2},-n,\frac {3}{2},1-\sin (e+f x)\right ) \sin ^{-n}(e+f x) (d \sin (e+f x))^n}{f (3+2 n) \sqrt {a+a \sin (e+f x)}}-\frac {2 a B \cos (e+f x) (d \sin (e+f x))^{1+n}}{d f (3+2 n) \sqrt {a+a \sin (e+f x)}} \]

[Out]

-2*a*(2*B*(1+n)+A*(3+2*n))*cos(f*x+e)*hypergeom([1/2, -n],[3/2],1-sin(f*x+e))*(d*sin(f*x+e))^n/f/(3+2*n)/(sin(
f*x+e)^n)/(a+a*sin(f*x+e))^(1/2)-2*a*B*cos(f*x+e)*(d*sin(f*x+e))^(1+n)/d/f/(3+2*n)/(a+a*sin(f*x+e))^(1/2)

Rubi [A] (verified)

Time = 0.15 (sec) , antiderivative size = 137, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.114, Rules used = {3060, 2855, 69, 67} \[ \int (d \sin (e+f x))^n \sqrt {a+a \sin (e+f x)} (A+B \sin (e+f x)) \, dx=-\frac {2 a (A (2 n+3)+2 B (n+1)) \cos (e+f x) \sin ^{-n}(e+f x) (d \sin (e+f x))^n \operatorname {Hypergeometric2F1}\left (\frac {1}{2},-n,\frac {3}{2},1-\sin (e+f x)\right )}{f (2 n+3) \sqrt {a \sin (e+f x)+a}}-\frac {2 a B \cos (e+f x) (d \sin (e+f x))^{n+1}}{d f (2 n+3) \sqrt {a \sin (e+f x)+a}} \]

[In]

Int[(d*Sin[e + f*x])^n*Sqrt[a + a*Sin[e + f*x]]*(A + B*Sin[e + f*x]),x]

[Out]

(-2*a*(2*B*(1 + n) + A*(3 + 2*n))*Cos[e + f*x]*Hypergeometric2F1[1/2, -n, 3/2, 1 - Sin[e + f*x]]*(d*Sin[e + f*
x])^n)/(f*(3 + 2*n)*Sin[e + f*x]^n*Sqrt[a + a*Sin[e + f*x]]) - (2*a*B*Cos[e + f*x]*(d*Sin[e + f*x])^(1 + n))/(
d*f*(3 + 2*n)*Sqrt[a + a*Sin[e + f*x]])

Rule 67

Int[((b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((c + d*x)^(n + 1)/(d*(n + 1)*(-d/(b*c))^m))
*Hypergeometric2F1[-m, n + 1, n + 2, 1 + d*(x/c)], x] /; FreeQ[{b, c, d, m, n}, x] &&  !IntegerQ[n] && (Intege
rQ[m] || GtQ[-d/(b*c), 0])

Rule 69

Int[((b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_), x_Symbol] :> Dist[((-b)*(c/d))^IntPart[m]*((b*x)^FracPart[m]/(
(-d)*(x/c))^FracPart[m]), Int[((-d)*(x/c))^m*(c + d*x)^n, x], x] /; FreeQ[{b, c, d, m, n}, x] &&  !IntegerQ[m]
 &&  !IntegerQ[n] &&  !GtQ[c, 0] &&  !GtQ[-d/(b*c), 0]

Rule 2855

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Dist
[a^2*(Cos[e + f*x]/(f*Sqrt[a + b*Sin[e + f*x]]*Sqrt[a - b*Sin[e + f*x]])), Subst[Int[(c + d*x)^n/Sqrt[a - b*x]
, x], x, Sin[e + f*x]], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ
[c^2 - d^2, 0] &&  !IntegerQ[2*n]

Rule 3060

Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.
) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[-2*b*B*Cos[e + f*x]*((c + d*Sin[e + f*x])^(n + 1)/(d*f*(2*n + 3)*Sqrt
[a + b*Sin[e + f*x]])), x] + Dist[(A*b*d*(2*n + 3) - B*(b*c - 2*a*d*(n + 1)))/(b*d*(2*n + 3)), Int[Sqrt[a + b*
Sin[e + f*x]]*(c + d*Sin[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, A, B, n}, x] && NeQ[b*c - a*d, 0] &&
EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] &&  !LtQ[n, -1]

Rubi steps \begin{align*} \text {integral}& = -\frac {2 a B \cos (e+f x) (d \sin (e+f x))^{1+n}}{d f (3+2 n) \sqrt {a+a \sin (e+f x)}}+\left (A+\frac {2 B (1+n)}{3+2 n}\right ) \int (d \sin (e+f x))^n \sqrt {a+a \sin (e+f x)} \, dx \\ & = -\frac {2 a B \cos (e+f x) (d \sin (e+f x))^{1+n}}{d f (3+2 n) \sqrt {a+a \sin (e+f x)}}+\frac {\left (a^2 \left (A+\frac {2 B (1+n)}{3+2 n}\right ) \cos (e+f x)\right ) \text {Subst}\left (\int \frac {(d x)^n}{\sqrt {a-a x}} \, dx,x,\sin (e+f x)\right )}{f \sqrt {a-a \sin (e+f x)} \sqrt {a+a \sin (e+f x)}} \\ & = -\frac {2 a B \cos (e+f x) (d \sin (e+f x))^{1+n}}{d f (3+2 n) \sqrt {a+a \sin (e+f x)}}+\frac {\left (a^2 \left (A+\frac {2 B (1+n)}{3+2 n}\right ) \cos (e+f x) \sin ^{-n}(e+f x) (d \sin (e+f x))^n\right ) \text {Subst}\left (\int \frac {x^n}{\sqrt {a-a x}} \, dx,x,\sin (e+f x)\right )}{f \sqrt {a-a \sin (e+f x)} \sqrt {a+a \sin (e+f x)}} \\ & = -\frac {2 a \left (A+\frac {2 B (1+n)}{3+2 n}\right ) \cos (e+f x) \operatorname {Hypergeometric2F1}\left (\frac {1}{2},-n,\frac {3}{2},1-\sin (e+f x)\right ) \sin ^{-n}(e+f x) (d \sin (e+f x))^n}{f \sqrt {a+a \sin (e+f x)}}-\frac {2 a B \cos (e+f x) (d \sin (e+f x))^{1+n}}{d f (3+2 n) \sqrt {a+a \sin (e+f x)}} \\ \end{align*}

Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 2.17 (sec) , antiderivative size = 409, normalized size of antiderivative = 2.99 \[ \int (d \sin (e+f x))^n \sqrt {a+a \sin (e+f x)} (A+B \sin (e+f x)) \, dx=-\frac {(1+i) 2^{-2-n} e^{-\frac {3 i e}{2}+i f n x} \left (1-e^{2 i (e+f x)}\right )^{-n} \left (-i e^{-i (e+f x)} \left (-1+e^{2 i (e+f x)}\right )\right )^n \left (\frac {2 B e^{-\frac {1}{2} i f (3+2 n) x} \operatorname {Hypergeometric2F1}\left (\frac {1}{4} (-3-2 n),-n,\frac {1}{4} (1-2 n),e^{2 i (e+f x)}\right )}{f (3+2 n)}+2 e^{i e} \left (-\frac {i (2 A+B) e^{-\frac {1}{2} i f (1+2 n) x} \operatorname {Hypergeometric2F1}\left (\frac {1}{4} (-1-2 n),-n,\frac {1}{4} (3-2 n),e^{2 i (e+f x)}\right )}{f+2 f n}+\frac {e^{\frac {1}{2} i (2 e+f (1-2 n) x)} \left (-\left ((2 A+B) (-3+2 n) \operatorname {Hypergeometric2F1}\left (\frac {1}{4} (1-2 n),-n,\frac {1}{4} (5-2 n),e^{2 i (e+f x)}\right )\right )+i B e^{i (e+f x)} (-1+2 n) \operatorname {Hypergeometric2F1}\left (\frac {1}{4} (3-2 n),-n,\frac {1}{4} (7-2 n),e^{2 i (e+f x)}\right )\right )}{f (-3+2 n) (-1+2 n)}\right )\right ) \sin ^{-n}(e+f x) (d \sin (e+f x))^n \sqrt {a (1+\sin (e+f x))}}{\cos \left (\frac {1}{2} (e+f x)\right )+\sin \left (\frac {1}{2} (e+f x)\right )} \]

[In]

Integrate[(d*Sin[e + f*x])^n*Sqrt[a + a*Sin[e + f*x]]*(A + B*Sin[e + f*x]),x]

[Out]

((-1 - I)*2^(-2 - n)*E^(((-3*I)/2)*e + I*f*n*x)*(((-I)*(-1 + E^((2*I)*(e + f*x))))/E^(I*(e + f*x)))^n*((2*B*Hy
pergeometric2F1[(-3 - 2*n)/4, -n, (1 - 2*n)/4, E^((2*I)*(e + f*x))])/(E^((I/2)*f*(3 + 2*n)*x)*f*(3 + 2*n)) + 2
*E^(I*e)*(((-I)*(2*A + B)*Hypergeometric2F1[(-1 - 2*n)/4, -n, (3 - 2*n)/4, E^((2*I)*(e + f*x))])/(E^((I/2)*f*(
1 + 2*n)*x)*(f + 2*f*n)) + (E^((I/2)*(2*e + f*(1 - 2*n)*x))*(-((2*A + B)*(-3 + 2*n)*Hypergeometric2F1[(1 - 2*n
)/4, -n, (5 - 2*n)/4, E^((2*I)*(e + f*x))]) + I*B*E^(I*(e + f*x))*(-1 + 2*n)*Hypergeometric2F1[(3 - 2*n)/4, -n
, (7 - 2*n)/4, E^((2*I)*(e + f*x))]))/(f*(-3 + 2*n)*(-1 + 2*n))))*(d*Sin[e + f*x])^n*Sqrt[a*(1 + Sin[e + f*x])
])/((1 - E^((2*I)*(e + f*x)))^n*(Cos[(e + f*x)/2] + Sin[(e + f*x)/2])*Sin[e + f*x]^n)

Maple [F]

\[\int \left (d \sin \left (f x +e \right )\right )^{n} \sqrt {a +a \sin \left (f x +e \right )}\, \left (A +B \sin \left (f x +e \right )\right )d x\]

[In]

int((d*sin(f*x+e))^n*(a+a*sin(f*x+e))^(1/2)*(A+B*sin(f*x+e)),x)

[Out]

int((d*sin(f*x+e))^n*(a+a*sin(f*x+e))^(1/2)*(A+B*sin(f*x+e)),x)

Fricas [F]

\[ \int (d \sin (e+f x))^n \sqrt {a+a \sin (e+f x)} (A+B \sin (e+f x)) \, dx=\int { {\left (B \sin \left (f x + e\right ) + A\right )} \sqrt {a \sin \left (f x + e\right ) + a} \left (d \sin \left (f x + e\right )\right )^{n} \,d x } \]

[In]

integrate((d*sin(f*x+e))^n*(a+a*sin(f*x+e))^(1/2)*(A+B*sin(f*x+e)),x, algorithm="fricas")

[Out]

integral((B*sin(f*x + e) + A)*sqrt(a*sin(f*x + e) + a)*(d*sin(f*x + e))^n, x)

Sympy [F]

\[ \int (d \sin (e+f x))^n \sqrt {a+a \sin (e+f x)} (A+B \sin (e+f x)) \, dx=\int \sqrt {a \left (\sin {\left (e + f x \right )} + 1\right )} \left (d \sin {\left (e + f x \right )}\right )^{n} \left (A + B \sin {\left (e + f x \right )}\right )\, dx \]

[In]

integrate((d*sin(f*x+e))**n*(a+a*sin(f*x+e))**(1/2)*(A+B*sin(f*x+e)),x)

[Out]

Integral(sqrt(a*(sin(e + f*x) + 1))*(d*sin(e + f*x))**n*(A + B*sin(e + f*x)), x)

Maxima [F]

\[ \int (d \sin (e+f x))^n \sqrt {a+a \sin (e+f x)} (A+B \sin (e+f x)) \, dx=\int { {\left (B \sin \left (f x + e\right ) + A\right )} \sqrt {a \sin \left (f x + e\right ) + a} \left (d \sin \left (f x + e\right )\right )^{n} \,d x } \]

[In]

integrate((d*sin(f*x+e))^n*(a+a*sin(f*x+e))^(1/2)*(A+B*sin(f*x+e)),x, algorithm="maxima")

[Out]

integrate((B*sin(f*x + e) + A)*sqrt(a*sin(f*x + e) + a)*(d*sin(f*x + e))^n, x)

Giac [F]

\[ \int (d \sin (e+f x))^n \sqrt {a+a \sin (e+f x)} (A+B \sin (e+f x)) \, dx=\int { {\left (B \sin \left (f x + e\right ) + A\right )} \sqrt {a \sin \left (f x + e\right ) + a} \left (d \sin \left (f x + e\right )\right )^{n} \,d x } \]

[In]

integrate((d*sin(f*x+e))^n*(a+a*sin(f*x+e))^(1/2)*(A+B*sin(f*x+e)),x, algorithm="giac")

[Out]

integrate((B*sin(f*x + e) + A)*sqrt(a*sin(f*x + e) + a)*(d*sin(f*x + e))^n, x)

Mupad [F(-1)]

Timed out. \[ \int (d \sin (e+f x))^n \sqrt {a+a \sin (e+f x)} (A+B \sin (e+f x)) \, dx=\int {\left (d\,\sin \left (e+f\,x\right )\right )}^n\,\left (A+B\,\sin \left (e+f\,x\right )\right )\,\sqrt {a+a\,\sin \left (e+f\,x\right )} \,d x \]

[In]

int((d*sin(e + f*x))^n*(A + B*sin(e + f*x))*(a + a*sin(e + f*x))^(1/2),x)

[Out]

int((d*sin(e + f*x))^n*(A + B*sin(e + f*x))*(a + a*sin(e + f*x))^(1/2), x)